
© Copyright 2014 Xilinx
.

Linux User Space

Device Drivers

John Linn
Based on 3.14 Linux kernel

© Copyright 2014 Xilinx
.

The purpose of this session is to educate about the options for

architecting Linux device drivers

Each method has advantages and disadvantages with the goal to

present them accurately

Hopefully you can have better conversations with customers

about options they have which could help get to product quicker

This training assumes the user has already taken an introduction

session into Linux device drivers with emphasis on character

and platform device drivers

Introduction

© Copyright 2014 Xilinx
.

Device Driver Architectures

Linux device drivers are typically designed as kernel drivers

running in kernel space

User space I/O is another alternative device driver architecture

that has been supported by the Linux kernel since 2.6.24

People in the Linux kernel community may not always agree on

the need to have user space I/O

Industrial I/O cards have been taking advantage of user space I/O

for quite some time

For some types of devices, creating a Linux kernel driver may be

overkill

Soft IP for FPGAs can have unique requirements that don’t

always fit the mold

© Copyright 2014 Xilinx
.

A character driver referred to as /dev/mem exists in the kernel that

will map device memory into user space

With this driver user space applications can access device memory

– We started a bad habit of using this a lot at Xilinx

Memory access can be disabled in the kernel configuration as this is

a big security hole (CONFIG_STRICT_DEVMEM)

– Most production kernels for distributions are likely to have it turned off

– There is a distinction between memory (RAM) and devices which are memory

mapped; devices are always allowed

Must be root user

A great tool for prototyping or maybe testing new hardware, but is not

considered to be an acceptable production solution for a user space

device driver

Since it can map any address into user space a buggy user space

driver could crash the kernel

Legacy User Space Driver Methods (/dev/mem)

© Copyright 2014 Xilinx
.

The Linux kernel provides a framework for doing user space

drivers called UIO

The framework is a character mode kernel driver (in drivers/uio)

which runs as a layer under a user space driver

UIO helps to offload some of the work to develop a driver

The “U” in UIO is not for universal

– Devices well handled by kernel frameworks should ideally stay in the

kernel (if you ask many kernel developers)

– Networking is one area where semiconductor vendors are doing user

space I/O to get improved performance

UIO handles simple device drivers really well

– Simple driver: Device access and interrupt processing with no need to

access kernel frameworks

Introduction to UIO

© Copyright 2014 Xilinx
.

Kernel Space Driver Characteristics

 Advantages

Runs in kernel space in the highest

privilege mode to allow access to

interrupts and hardware resources

There are a lot of kernel services such

that kernel space drivers can be

designed for complex devices

The kernel provides an API to user

space which allows multiple

applications to access a kernel space

driver simultaneously

– Larger and more scalable software

systems can be architected

Many drivers tend to be kernel space

– Asking questions in the open source

community is going to be easier

– Pushing drivers to the open source

community is likely easier

 Disadvantages

System call overhead to access drivers

– A switch from user space to kernel

space (and back) is required

– Overhead can be non-deterministic

having impact on real time applications

Challenging learning curve for

developers

– The kernel API is different from the

application level API such that it takes

time to become productive

Bugs can be fatal causing a kernel crash

Challenging to debug

– Kernel code is highly optimized and

there are different debug tools

Frequent kernel API changes

– Kernel drivers built for one kernel

version may not build for another

© Copyright 2014 Xilinx
.

 Disadvantages

No access to the kernel frameworks and

services

– Contiguous memory allocation, direct

cache control, and DMA are not

available

– May have to duplicate kernel code or

use a kernel driver to supplement

Interrupt handling cannot be done in

user space

– It must be handled by a kernel driver

which notifies user space causing some

delay

There is no predefined API to allow

applications to access the device driver

– Concurrency must also be considered if

multiple applications access a driver

User Space Device Driver Characteristics

 Advantages

Less challenging to debug as

debug tools are more readily

available and common to

normal application

development

User space services such as

floating point are available

Device access is very efficient

as there is no system call

required

The application API of Linux is

very stable

The driver can be written in any

language, not just “C”

© Copyright 2014 Xilinx
.

UIO Framework Features
There are two distinct UIO device drivers provided by Linux in

drivers/uio

UIO Driver (drivers/uio.c)

– For more advanced users as a minimal kernel space driver is required to setup

the UIO framework

– This is the most universal and likely to handle all situations since the kernel

space driver can be very custom

– The majority of work can be accomplished in the user space driver

UIO Platform Device Driver (drivers/uio_pdev_irqgen.c)

– This driver augments the UIO driver such that no kernel space driver is required

• It provides the required kernel space driver for uio.c

– It works with device tree making it easy to use

• The device tree node for the device needs to use “generic-uio” in it’s compatible

property

– Best starting point since no kernel space code is needed

• It is the focus of this presentation

© Copyright 2014 Xilinx
.

UIO Driver Kernel Configuration

UIO drivers must be configured in the Linux kernel

– CONFIG_UIO=y

– CONFIG_UIO_PDRV_GENIRQ=y

The Xilinx kernel is configured to include UIO by default

© Copyright 2014 Xilinx
.

UIO Platform Device Driver Details

The user provides only

a user space driver

The UIO platform

device driver

configures from the

device tree and

registers a UIO device

The user space driver

has direct access to

the hardware

The user space driver

gets notified of an

interrupt by reading

the UIO device file

descriptor

© Copyright 2014 Xilinx
.

Kernel UIO API – Sys Filesystem

The UIO driver in the kernel creates file attributes in the sys

filesystem describing the UIO device

/sys/class/uio is the root directory for all the file attributes

A separate numbered directory structure is created under

/sys/class/uio for each UIO device

– First UIO device: /sys/class/uio/uio0

– /sys/class/uio/uio0/name contains the name of the device which correlates

to the name in the uio_info structure

– /sys/class/uio/uio0/maps is a directory that has all the memory ranges for

the device

– Each numbered map directory has attributes to describe the device

memory including the address, name, offset and size

• /sys/class/uio/uio0/maps/map0

© Copyright 2014 Xilinx
.

User Space Driver Flow

1. The kernel space UIO device driver(s) must be loaded before the

user space driver is started (if using modules)

2. The user space application is started and the UIO device file is

opened (/dev/uioX where X is 0, 1, 2…)

– From user space, the UIO device is a device node in the file system just like

any other device

3. The device memory address information is found from the relevant

sysfs directory, only the size is needed

4. The device memory is mapped into the process address space by

calling the mmap() function of the UIO driver

5. The application accesses the device hardware to control the device

6. The device memory is unmapped by calling munmap()

7. The UIO device file is closed

© Copyright 2014 Xilinx
.

User Space Driver Example

#define UIO_SIZE "/sys/class/uio/uio0/maps/map0/size"

int main(int argc, char **argv) {

 int uio_fd;

 unsigned int uio_size;

 FILE *size_fp;

 void *base_address;

 uio_fd = open(“/dev/uio0”, O_RDWR);

 size_fp = fopen(UIO_SIZE, O_RDONLY);

 fscanf(size_fp, “0x%08X”, &uio_size);

 base_address = mmap(NULL, uio_size,

 PROT_READ | PROT_WRITE,

 MAP_SHARED, uio_fd, 0);

 // Access to the hardware can now occur….

 munmap(base_address, uio_size);

}

Open the UIO device so

that it’s ready to use

Get the size of the

memory region from the

size sysfs file attribute

Map the device registers

into the process address

space so they are directly

accessible

Unmap the device

registers to finish

No error checking

© Copyright 2014 Xilinx
.

Mapping Device Memory Details

The character device driver framework of Linux provides the

ability to map device memory into a user space process address

space

A character driver may implement the mmap() function which a

user space application can call

The mmap() function creates a new mapping in the virtual

address space of the calling process

– A virtual address, corresponding to the physical address specified is

returned

– It can also be used to map a file into a memory space such that the

contents of the file are accessed by memory reads and writes

Whenever the user space program reads or writes in the virtual

address range it is accessing the device

This provides improved performance as no system calls are

required

© Copyright 2014 Xilinx
.

User space

application

(process)

Device

driver

MMU

mmap

system

call

virtual

address

returned access

virtual

address

access

physical

address

process virtual

address space

physical

address space

Mapping Device Memory Flow

MMU

translation

table

© Copyright 2014 Xilinx
.

User Space Application Interrupt Processing

Interrupts are never handled directly in user space

The interrupt can be handled by the UIO kernel driver which then

relays it on to user space via the UIO device file descriptor

The user space driver that wants to be notified when interrupts

occur calls select() or read() on the UIO device file descriptor

– The read can be done as blocking or non-blocking mode

read() returns the number of events (interrupts)

A thread could be used to handle interrupts

Alternatively a user provided kernel driver can handle the

interrupt and then communicate data to the user space driver

through other mechanisms like shared memory

– This may be necessary for devices which have very fast interrupts

© Copyright 2014 Xilinx
.

User Space Application Interrupt Example

The UIO device is opened

as previously described

Read the UIO device file

descriptor to wait for an

interrupt, the read blocks

by default, a non-blocking

read can also be used

The pending variable

contains the number of

interrupts that have

occurred if multiple

Re-enable the interrupt at

the interrupt controller

level

int pending = 0;

int reenable = 1;

int uio_fd = open(“/dev/uio0”, O_RDWR);

read(uio_fd, (void *)&pending, sizeof(int));

// add device specific processing like

// acking the interrupt in the device here

write(uio_fd, (void *)&reenable, sizeof(int));

No error checking

© Copyright 2014 Xilinx
.

Advanced UIO With Both User Space

Application and Kernel Space Driver

© Copyright 2014 Xilinx
.

UIO Driver Details
The user provides a

kernel driver and a

user space driver

The kernel space

driver is a platform

driver configuring

from the device tree

and registering a UIO

device

The kernel space

driver can also provide

an interrupt handler in

kernel space

The user space driver

has direct access to

the hardware

© Copyright 2014 Xilinx
.

Kernel UIO API - Basics

The API is small and simple to use

struct uio_info

– name: device name

– version: device driver version

– irq: interrupt number

– irq_flags: flags for request_irq()

– handler: driver irq handler (optional)

– mem[]: memory regions that can be mapped to user space

• addr: memory address

• memtype: type of memory region (physical, logical, virtual)

© Copyright 2014 Xilinx
.

Kernel UIO API - Registration

The function uio_register_device() connects the driver to the UIO

framework

– Requires a struct uio_info as an input

– Typically called from the probe() function of a platform device driver

– Creates device file /dev/uio# (#starting from 0) and all associated sysfs file

attributes

The function uio_unregister_device() disconnects the driver from

the UIO framework

– Typically called from the cleanup function of a platform device driver

– Deletes the device file /dev/uio#

© Copyright 2014 Xilinx
.

Kernel Space Driver Example

probe() {

 dev = devm_kzalloc(&pdev->dev,

 (sizeof(struct uio_timer_dev)), GFP_KERNEL);

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 dev->regs = devm_ioremap_resource(&pdev->dev, res);

 irq = platform_get_irq(pdev, 0);

 dev->uio_info.name = "uio_timer";

 dev->uio_info.version = 1;

 dev->uio_info.priv = dev;

 dev->uio_info.mem[0].name = "registers";

 dev->uio_info.mem[0].addr = res->start;

 dev->uio_info.mem[0].size = resource_size(res);

 dev->uio_info.mem[0].memtype = UIO_MEM_PHYS;

 dev->uio_info.irq = irq;

 dev->uio_info.handler = uio_irq_handler;

 uio_register_device(&pdev->dev, &dev->info);

}

Platform device

driver initialization

in the driver probe()

function

Add basic UIO

structure

initialization

Add the memory

region initialization

for the UIO

Add the interrupt

initialization for the

UIO

Register the UIO

device with the

kernel framework

No error checking

© Copyright 2014 Xilinx
.

UIO Framework Details

UIO Driver

– The device tree node for the device can use whatever you want in the

compatible property as it only has to match what is used in the kernel

space driver as with any platform device driver

UIO Platform Device Driver

– The device tree node for the device needs to use “generic-uio” in it’s

compatible property

© Copyright 2014 Xilinx
.

References

http://www.celinux.org/elc08_presentations/uio080417celfelc08.pdf

http://www.osadl.org/fileadmin/dam/interface/docbook/howtos/uio-

howto.pdf

https://www.kernel.org/doc/htmldocs/uio-howto/

http://lwn.net/Articles/267427/

Petalinux Device Drivers, User Space IO, and Loadable Kernel

Modules

https://thesource.gosavo.com/Document/Document.aspx?id=295400

98&view=&srlid=28271653&srisprm=False&sritidx=10&srpgidx=0&sr

pgsz=25

Device Drivers For Hardware

https://thesource.gosavo.com/Document/Document.aspx?id=295401

01&view=&srlid=28271653&srisprm=False&sritidx=11&srpgidx=0&sr

pgsz=25

