& AILINA

ALL PROGRAMMABLE.

Linux DMA In Device
Drivers

John Linn
Based on Linux kernel 3.14

Y £
Introduction

» The goal of this session is to help users understand the Linux
kernel DMA framework and how it can be used in a device driver

» DMA in Linux is designed to be used from a kernel space driver

» User space DMA is possible and is a more advanced topic that is
not covered in this presentation

» The primary
components of DMA
Include the DMA DMA
device control I\/Iemo_ry Device
together with memory Allocation Control
allocation and cache
control

Cache
Control

& XILINX » ALL PROGRAMMABLE.

Memory Allocation For DMA — Part 1

> Linux provides memory allocation
functions in the kernel

» The vmalloc() function allocates
cached memory which is virtually
contiguous but not physically
contiguous

— Not as useful for DMA without an /O
MMU

— Zyng does not have an I/O MMU

» The kmalloc() function allocates
cached memory which is physically
contiguous

— Itis limited in the size of a single
allocation

— Testing showed 4 MB to be the limit,
but it might vary with kernels

8KB

Contiguous
Memory

8KB Non-
Contiguous
Memory

Virtual
Memory
Pages

Address 0

Physical
Memory
Pages

Address
0x1000

h 4

Address 0

Address
0x2000

Address
0x1000

Address
0x3000

Address
0x4000

A 4

Address
0x2000

Address
0x3000

Address
0x5000

& XILINX » ALL PROGRAMMABLE.

Y

Address
0x4000

Address
0x5000

. R
Memory Allocation For DMA — Part 2

» The dma_alloc_coherent() function allocates non-cached physically
contiguous memory
— The name coherent can be a confusing name (for me anyway)

— The CPU and the I/O device see the same memory contents without any
cache operations

— Accesses to the memory by the CPU are the same as a cache miss when
the cache is used

— The CPU does not have to invalidate or flush the cache which can be time
consuming

— This function is the intended function for DMA memory allocation

— There is another function, dma_alloc_noncoherent() but it’s not really
implemented so don’t use it

& XILINX » ALL PROGRAMMABLE.

e > ¢
Boot Time Memory Setup

» Memory can be reserved such that the kernel does not use it

— MEM=512M on the kernel command line causes it to use only 512M of
memory

— The device tree memory can also be changed

> This is the oldest method allowing large amounts of memory to be
allocated for DMA

> Drivers use io_remap() to map the physical memory address into the
virtual address space

» There are multiple versions io_remap() which allow cached and non-
cached

> These functions don’t allocate any memory, they only map the
memory into the address space in the page tables

» The Linux io_remap() function causes the memory to be setup as
Device Memory in the MMU which should be slower than Normal
Memory

& XILINX » ALL PROGRAMMABLE.

Cortex A9 Memory Attributes — Device Memory

» The Zyng TRM explains the details on pages 70 and 82

» Each page of memory in Linux is setup with memory attributes based on
its specific purpose

» The number and size of accesses are preserved, accesses are atomic,
and will not be interrupted part way through

» Both read and write accesses can have side-effects on the system.
Accesses are never cached

» Speculative accesses are never be performed
» Accesses cannot be unaligned

» The order of accesses arriving at Device memory is guaranteed to
correspond to the program order of instructions which access device
memory

> A write to Device memory is permitted to complete before it reaches the
peripheral or memory component accessed by the write

& XILINX » ALL PROGRAMMABLE.

. R
Cortex A9 Memory Attributes — Normal Memory

» The processor can repeat read and some write accesses

> The processor can pre-fetch or speculatively access additional memory
locations, with no side-effects (if permitted by MMU access permission

settings)
» The processor does perform speculative writes
» Unaligned accesses can be performed

> Multiple accesses can be merged by processor hardware into a smaller
number of accesses of a larger size

& XILINX » ALL PROGRAMMABLE.

. R
Contiguous Memory Allocator (CMA)

> This is a newer feature of the kernel that some people may not know
about

> There had been a lot of demand for larger memory buffers needed for
many applications including multimedia

» CMA came into the kernel at version 3.5, about 2 years ago
> Is only accessible in the DMA framework via dma_alloc_coherent()

> Allows very large amounts of physically contiguous memory to be
allocated
> Defaults to small amounts

— Can be increased on the kernel command line (CMA=) which doesn’t
require a kernel rebuild

— Can be increased in the kernel configuration

& XILINX » ALL PROGRAMMABLE.

CMA Kernel Configuration

Jhome/linnj/xilinx2/702-axi-dma-loopback/subsystems/1linux/configs/kernel/config -
u> Kernel Features
Kernel Features
Arrow keys navigate the menu. <Enter> selects submenus
submenus ----). Highlighted letters are hotkeys.

» The Xilinx kernel has

---> (or empty
Pressing <Y> includes,

CMA turned on by
default, but this may
vary with kernel
versions

» Note that the

Contiguous Memory
Allocator must be
turned on to see the
configuration options in
the device drivers
configuration for DMA
CMA (next slide)

<N> excludes, <M> modularizes features.
Help, </= for Search.

Press <Esc=<Esc= to exit, <?= for
Legend: [*] built-in [] excluded <M> module =< =

v

Lo W W e W W s W s W s W s I W s Wy W W Wy W W W |

* %

* B

ﬂ* Symmetric Multi-Processing

Allow booting SMP kernel on uniprocessor systems (EXPERIMENTAL)
Support cpu topology definition
Architected timer support
Multi-Cluster Power Management
big.LITTLE support (Experimental)
Memory split (3G/1G user/kernel split)
Maximum number of CPUs (2-32)
Support for hot-pluggable CPUs
support for the ARM Power State Coordination Interface (PSCI)
Preemption Model (Preemptible Kernel (Low-Latency Desktop))
Timer frequency (100 Hz) ---=
compile the kernel in Thumb-2 mode
Use the ARM EABI to compile the kernel
Allow old ABI binaries to run with this kernel (EXPERIMENTAL)
High Memory Support
Allocate 2nd-level pagetables from highmem
Allow for memory compaction
Enable bounce buffers
Enable KSM for page merging
96) Low address space to protect from user allocation
Cross Memory Support
Enable cleancache driver to cache clean pages if tmem is present
Enable frontswap to cache swap pages if tmem is present
Contiguous Memory Allocator
Memory allocator for compressed pages
Use kernel mem{cpy,set}() for {copy to,clear} user()
Enable seccomp to safely compute untrusted bytecode
¥en guest support on ARM (EXPERIMENTAL)

< Exit > < Help = < Save > < Load =

& XILINX » ALL PROGRAMMABLE.

. R
DMA CMA Kernel Configuration

Jhome/1linnj/xilinx2/702-axi-dma-loopback/subsystems/linux/configs/kernelfconfig - L
u= Device Drivers > Generic Driver Options
Generic Driver Options
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes,
<N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for
Help, </> for Search. Legend: [*] built-in [] excluded <M= module < =

(/sbinf/hotplug) path to uevent helper
[*] Maintain a devtmpfs filesystem to mount at /dev
[*] Automount devtmpfs at [dev, after the kernel mounted the rootfs
[*] select only drivers that don't need compile-time external firmware
[*] Prevent firmware from being built
<*> Userspace firmware loading support
[] Include in-kernel firmware blobs in kernel binary
() external firmware blobs to build into the kernel binary
[*] Fallback user-helper invocation for firmware loading
[] briver Core verbose debug messages
Managed device resources verbose debug messages

(B ota_Conttguous enory Allocator

*** Default contiguous memory area size: **%
(16) <=ize in Mega Bytes (NEW)

selected region size (Use mega bytes value only) ---=
(8) Maximum PAGE_SIZE order of alignment for contiguous buffers (NEW)
(7) Maximum count of the CMA device-private areas (NEW)

< Exit > < Help = < Save > < Load =

& XILINX » ALL PROGRAMMABLE.

.
Linux Kernel Details For DMA

» A descriptor is used to describe a DMA transaction such that a single
data structure can be passed in an API.

— A descriptor can also describe a DMA transaction to a DMA core such as the
AXI DMA when it is built to use scatter gather

> A completion is a lightweight mechanism which allows one thread to
tell another thread that a task is done

> A tasklet implements deferrable functionality and replaces older
bottom half mechanisms for drivers

— A function can be scheduled to run at a later time with a tasklet
» A cookie is an piece of opaque data which is returned from a

function, then passed to yet a different function communicating
information which only those functions understand

— A DMA cookie is returned from dmaengine submit() and is passed to
dma async is tx _complete() to check for completion of a specific DMA
transaction

— DMA cookies may also contain a status of a DMA transaction
£ XILINX » ALL PROGRAMMABLE.

Linux DMA Engine Application

» A driver, dmaengine.c, along with Xilinx
DMA drivers, is located in drivers/dma of
the kernel

Kernel

Device Specific Driver
» Documentation about this seems to be

limited DMA Engine Driver

— In kernel: Documentation/dmaengine.txt

— No other good information on the web _
» The Xilinx kernel has the DMA engine driver turned on by default

— The Xilinx DMA core drivers are only visible in the configuration when
they are enabled

» The DMA test for the AXI DMA cores in the Xilinx kernel uses the
DMA engine slave API

— This test code is pretty complex with multiple threads such that it’s not
easy to get down to the basics

— The tests are also located in drivers/dma (axidmatest.c)
£ XILINX » ALL PROGRAMMABLE.

. R
Linux DMA Engine Slave APl - Page 1

» The DMA Engine driver works as a layer under the Xilinx DMA drivers
using the slave DMA API

— It appears that slave may refer to the fact that the software initiates the DMA
transactions to the DMA controller hardware rather than a hardware device with
integrated DMA initiating a transaction

» Drivers which use the DMA Engine driver are referred to as a client

» The API designed to handle complex DMA with scatter gather

— The lab exercise for this session is only using simple DMA to minimize
complexity

& XILINX » ALL PROGRAMMABLE.

. R
Linux DMA Engine Slave APl — Page 2

~

<

2. Set slave and

parameters

~,

controller specific

P

6. Wait for it to
complete

N

> The slave DMA
usage
consists of
following
these steps.

& XILINX » ALL PROGRAMMABLE.

. R
Linux DMA Engine Slave APl — Page 3

> Client drivers typically need a channel from a particular DMA
controller only and even in some cases a specific channel is desired
» The function dma request channel() is used to request a channel
— A channel allocated is exclusive to the caller
» The function dma_release channel() is used to release a channel
» The dmaengine_prep_slave single() function gets a descriptor for a
DMA transaction

— This is really converting a single buffer without a descriptor to use a
descriptor

— Other functions are provided which allow other DMA modes including
cyclic and interleaved modes

& XILINX » ALL PROGRAMMABLE.

. R
Linux DMA Engine Slave API — Page 4

» The dmaengine_submit() function submits the descriptor to the DMA
engine to be put into the pending queue

— The returned cookie can be used to check the progress
» The dma_async _issue pending() function is used to start the DMA

transaction by issuing a pending DMA request and wait for callback
notification

— If channel is idle then the first transaction in queue is started and subsequent
transactions are queued up

— On completion of each DMA operation, the next in queue is started and a
tasklet triggered. The tasklet will then call the client driver completion callback
routine for notification, if set.

& XILINX » ALL PROGRAMMABLE.

Allocating a Channel Example

dma_cap_mask_t mask;
dma_cap_zero(mask);

dma_cap_set(DMA_SLAVE | DMA_PRIVATE, mask);

chan = dma_request_channel(mask, NULL, NULL);

/[application specific processing
// with the channel

dma_release_channel(chan);

A private
channel is not
affected by
processing for
other channels

/

A more specific

channel can be

requested with
a filter

> Set up the
capabilities for the
channel that will be
requested

» Request the DMA
channel from the
DMA engine

» Release the channel
after the application
IS done with it

& XILINX » ALL PROGRAMMABLE.

. R
Starting A DMA Transfer Example

completion cmp;
enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;

char *buf = kmalloc(1024, GFP_KERNEL);
dma_map_single(device, dma_buffer, 1024, DMA_TO_DEVICE);

chan_desc = dmaengine_prep_slave_single(chan, buf, 1024,

DMA MEM TO_DEV , flags);
chan_desc->callback = <call back function on completion>;
chan_desc->callback param = cmp;

dma_cookie_t cookie = dmaengine_submit(chan_desc);

1. Allocate a 1KB buffer of cached contiguous memory

2. Cause the buffer to be ready to use by the DMA including any
cache operations required

3. Create a descriptor for the DMA transaction
4. Setup the callback function for the descriptor

5. Queue the descriptor in the DMA engine
£ XILINX » ALL PROGRAMMABLE.

. R
Linux Asynchronous Transfer API

» The async_tx API provides methods for describing a chain of
asynchronous bulk memory transfers/transforms with support for
Inter-transactional dependencies

> It is implemented as a dmaengine client that smooths over the
details of different hardware offload engine implementations

» Code that is written to the API can optimize for asynchronous
operation and the API will fit the chain of operations to the available
offload resources

» The dma _async _issue pending() function starts the DMA transaction

— The DMA engine calls the callback function that was supplied with the
submit function when the transfer is complete

» The dma async_is tx_complete() function checks to see if the DMA
transaction completed

& XILINX » ALL PROGRAMMABLE.

. R
Waiting For DMA Completion Example

unsigned long timeout = msecs_to_jiffies(3000);

enum dma_status status; > Initialize the completion

struct completion cmp; so the DMA engine can
indicate when it’s done

» Cause the DMA engine
to start on any pending
(queued) work

init_completion(&cmp);
dma_async_issue_pending(chan);

timeout = wait_for_completion_timeout(&cmp,

timeout); » Wait for the DMA
status =dma_async_is_tx_complete(chan, cookie, transfer to complete
NULL, NULL);

» Get the status of the

P QImERE ==0) o DMA transfer
/[timeout processing

} else if (status '= DMA_COMPLETE) { > The transfer could have
if (status == DMA_ERROR) { timed out or completed,

I/l error processing with an error or OK

& XILINX » ALL PROGRAMMABLE.

. R
Requesting A Specific DMA Channel

» The dma request channel() function provides parameters to allow a
specific channel to be requested when there are multiple channels

— struct dma_chan *dma_request_channel(dma_cap_mask_t mask,
dma filter fn filter_fn, void *filter_param)

» dma_filter fnis defined as:
— typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter _param)

— the filter_fn routine will be called once for each free channel which has a
capability in mask

— filter_fn is expected to return 'true' when the desired DMA channel is
found

» The DMA channel unique ID is defined by the DMA driver using the
DMA Engine

— For Xilinx, the AXI DMA, AXI CDMA, and AXI VDMA drivers

— They use a 32 bit word which is made up of the device id from the device tree
for the channel together with the channel direction and a Xilinx 1D

& XILINX » ALL PROGRAMMABLE.

Requesting A Specific Channel Example

#include <linux/amba/xilinx_dma.h>
u32 device_id = <device-id from device tree> << XILINX_DMA_DEVICE_ID SHIFT

u32 match; 4 bits are
: : : available
static bool filter(struct dma_chan *chan, void *param)

allowing IDs 0 —
{ 15, they default
if (*((int *)chan->private) == *(int *)param) to 0 in the device

return true; tree
return false;

The
Xilinx
unique
ID

}

direction = DMA_MEM_TO_DEV;
match = (direction & OxFF) | XILINX _DMA _IP_DMA | device_id);
chan = dma_request_channel(mask, filter, (void *)&match);

» A filter function determines if the channel matches the desired
channel

» Set up the criteria for the channel being requested

» Request the channel specifying the filter function and the match
criteria

& XILINX » ALL PROGRAMMABLE.

Y o
OCM and DMA

» The zyng BSP includes a general purpose allocator for OCM
— arch/arm/mach-zyng/zynq_ocm.c

> It maps the memory in the MMU as device memory rather than
normal memory which is typically slower

> The API is different, but simple, and there’s minimal documentation
— Include/linux/genalloc.h

» Getting a handle to the pool is the toughest part as you need to look
it up thru the device tree node

» The function gen_pool dma alloc() is used to allocate a block of
memory from the pool

» The driver works for OCM mapped low or high in memory as it reads
the SLCR to determine where it’s located

& XILINX » ALL PROGRAMMABLE.

e > ¢
DMA With Accelerator Coherency Port (ACP)

» When DMA is connected to the ACP port of Zyng the DMA
transactions can be cache coherent such that software does not
need to worry about the caches

» Cache operations in software can be a signficant amount of
processing for large buffers

» There are tradeoffs to be made as the DMA transactions can also
disrupt the CPU caches such that there could be performance
iImpacts to the software

& XILINX » ALL PROGRAMMABLE.

Hardware System For Lab

» Using AXI DMA without scatter gather, with the transmit stream
looped back to the receive stream

n00:0)

douf 10}

ax_mem_intercon

a_dma_0

M_AX MMISS)—I
M_AX_S2M M (3
M_AXIS MMIS G

al

Fax ax
FOLK_RESETO_N

0OR ([
FICED 10> ([t
||| >s_ma_seo_sFo_crme USSIND_0dh
{I| s _xa_swo - Maxseod)
LAX] GPO_ACIX TTCO_WAVED_OUT b=
S_AXI_HFO_AMOLK ZYNO TTCOWAVEL OUT b=
1RQ_F2P(1:0] TTCOWAVE2 OUT b=

FIXED_IO

& XILINX » ALL PROGRAMMABLE.

S
References

> http://infocenter.arm.com/help/topic/com.arm.doc.dai0228a/DAI228A _
DMA_on_SMP_systems.pdf

> https://www.kernel.org/doc/Documentation/crypto/async-tx-api.txt
> https:/www.kernel.org/doc/Documentation/dmaengine.txt

» include/linux/async_tx.h

» include/linux/dmaengine.h

> http://lwn.net/Articles/450286/

> http://lwn.net/Articles/267134/

& XILINX » ALL PROGRAMMABLE.

