
Introduction to Linux

Device Drivers

John Linn
Based on 3.14 Linux kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Make you aware of the architecture and frameworks of Linux

Teach you how to read a simple device driver at a high level and

understand its functionality

Point you to good reference material where you can learn all the

details

– The references are in the last slide

– Linux Device Drivers is a book that is heavily used by all Linux kernel

developers

The following are not goals of this training:

– Will not make you a device driver developer

– Will not make you ready to submit a driver upstream to the kernel community

• The APIs vary with kernel versions and it is hard to stay up to date on the coding

guidelines for upstreaming unless you are actively doing it

Goals Of This Training

Kernel Runtime Configuration Concepts Device Drivers Debugging

Concepts Review

Kernel Modules

Kernel Frameworks

Device Tree

Platform Device Driver

Character Device Driver

Debugging

Outline

Kernel Runtime Configuration Concepts Device Drivers Debugging

A lot of good documentation exists in the public domain if you

know where to find it

A lot of the information in this presentation is based on others’

work including Free Electrons

Free Electrons provides excellent training materials for free and

licensed as Creative Commons CC-BY-SA

– http://free-electrons.com/docs

Introduction

License: Creative Commons Attribution - Share Alike 3.0

– http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free:

– to copy, distribute, display, and perform the work

– to make derivative works

– to make commercial use of the work

Under the following conditions:

– Attribution. You must give the original author credit.

– Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license

identical to this one.

– For any reuse or distribution, you must make clear to others the license terms of this work.

– Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Kernel Runtime Configuration Concepts Device Drivers Debugging

Virtual memory management is a key aspect of Linux

– The Memory Management Unit (MMU) of the processor translates virtual

addresses to physical addresses

Linux divides virtual memory into kernel space and user space

– Kernel space is the memory area for the kernel and device drivers

• Kernel space is the top 1 GB of memory, 0xC0000000 to 0xFFFFFFFF

– User space is the memory area for user application software

• User space is the bottom 3 GB of memory, 0 to 0xBFFFFFFF

– Other kernel/user space memory configurations are configurable in the kernel

such as 2 GB kernel and 2 GB user space

– Kernel space virtual address 0xC0000000 maps to physical address zero

Linux uses the processor modes to create privilege levels

– The kernel executes at a higher privilege level than user space code such that it can

access any resources in the system

– Applications execute at a lower privilege level such that they must use the kernel to get

to the restricted resources in the system

Linux Architecture 101

Concepts

Kernel Runtime Configuration Concepts Device Drivers Debugging

Library functions run in user space and provide a more convenient interface

for the programmer

– Linux applications require a C library to build which is provided by the tools

– The Xilinx Linux GNU tools are based on the GNU C Library (glibc)

– The Xilinx standalone GNU tools are based on newlib library rather than glibc

System calls run in kernel mode on the user’s behalf and are provided by the

kernel itself

A library function calls one or more system calls, and these system calls

execute in supervisor mode since they are part of the kernel itself

Once the system call completes its task, it returns and execution is

transferred back to user mode

The user space application is typically blocked until the library function and

system call return (just like a function call)

System calls may interact with the kernel proper, or with specific drivers and

frameworks of the kernel

Linux Architecture 101 – Page 2

Concepts

Kernel Runtime Configuration Concepts Device Drivers Debugging

Linux Architecture 101 – Page 3

User Space

Kernel Space

Concepts

Kernel Runtime Configuration Concepts Device Drivers Debugging

Linux Architecture 101 – Page 4

Concepts

* Illustration taken from http://en.wikipedia.org/wiki/Microkernel

Linux, A Monolithic Kernel

based Operating System

Microkernel based Operating

System (such as FreeRTOS)

Kernel Runtime Configuration Concepts Device Drivers Debugging

You don’t have to be a kernel expert, but understanding some

terms will help a lot

The Linux Device model is built around the concept of busses,

devices and drivers.

All devices in the system are connected to a bus of some kind.

A bus may be a software abstraction rather than a real bus.

Busses primarily exist to gather similar devices together and

coordinate initialization, shutdown and power management

When a device in the system is found to match a driver, they are

bound together. The specifics about how to match devices and

drivers are bus-specific.

Linux Device Model (Chapter 14 LDD)

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Network devices

– These are represented as network interfaces, visible in userspace using

the ifconfig utility

Block devices

– These are used to provide userspace applications access to raw storage

devices (hard disks, USB keys)

– Visible to the applications as device files in /dev

Character devices

– These are used to provide userspace applications access to all other types

of devices (input, sound, graphics, serial, etc.)

– They are also visible to the applications as device files in /dev

– Many devices are character devices and a lot of user IP could be

accessed as a character device

MTD devices

– Flash memory is a unique device type that has translations to allow them

to be used as block and character devices

Linux Device Types

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Many device drivers are not directly implemented as character

devices or block devices. They are implemented under a framework,

specific to a device type (framebuffer, V4L, serial, etc.).

 The framework factors out the common parts of drivers for the

same type of devices to reduce code duplication

From userspace, many are still seen as normal character devices

The frameworks provide a coherent userspace interface (ioctl

numbering and semantics, etc.) for every type of device, regardless

of the driver

– The network framework of Linux provides a socket API such that an

application can connect to a network using any network driver without

knowing the details of the network driver

• sockfd = socket(AF_INET, SOCK_STREAM, 0);

Linux Kernel Frameworks

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Linux Kernel Layers Focused on Frameworks

A driver is always

interfacing with:

– A framework that allows

the driver to expose the

hardware features to

userspace applications

– A bus infrastructure (part

of the device model), to

detect/communicate with

the hardware

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Example Frameworks

Kernel

Linux

Frameworks

Kernel Runtime Configuration Concepts Device Drivers Debugging

System and kernel information

– Presented to user space application as virtual file systems

– Created dynamically and only exist in memory

Two virtual filesystems most known to users

– proc, mounted on /proc, contains operating system related information

(processes, memory management parameters...)

• This is an older mechanism that became somewhat chaotic

– sysfs, mounted on /sys, contains a representation of the system as a set of

devices and buses together with information about these devices

• This is the newer mechanism and is the preferred place to add system

information

Virtual File Systems - Overview

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

The sysfs virtual filesystem is a mechanism for the kernel to

export operating details to user space

The kernel exports the following items to user space

– The bus, device, drivers, etc. structures internal to the kernel

– /sys/bus/ contains the list of buses

– /sys/devices/ contains the list of devices

– /sys/class enumerates devices by class (net, input, block...), whatever the

bus they are connected to

Used for example by udev to provide automatic module loading,

firmware loading, device file creation, etc. (more details on udev later)

Take your time to explore /sys on your workstation

Virtual File Systems - sysfs

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

The Linux kernel by design is a monolithic kernel, but is also modular

The kernel can dynamically load and unload parts of the kernel code

which are referred to kernel modules

Modules allow the kernel capabilities to be extended without

modifying the rest of the code or rebooting the kernel

A kernel module can be inserted or removed while the kernel is

running

– It can be inserted manually by a root user or from a user space script at startup

Kernel modules help to keep the kernel size to a minimum and makes

the kernel very flexible

Kernel modules are useful to reduce boot time since time is not spent

initializing devices and kernel features that are only needed later

Once loaded, kernel modules have full control and privileges in the

system such that only the root user can load and unload modules

Kernel Modules

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Naming Convention: <file name>.ko

Location: /lib/modules/<kernel_version> on the root filesystem

Device drivers can be kernel modules or statically built into the

kernel image

– The default kernel build from Xilinx generally builds most drivers into the

kernel statically so they are started automatically

A kernel module is not necessarily a device driver; it is an extension

of the kernel

Kernel modules are loaded into virtual memory of the kernel

– Kernel virtual space is limited, but can be adjusted on the command line

Building a device driver as a module makes the development easier

since it can be loaded, tested, and unloaded without rebooting the

kernel

– FTP and NFS work well to transfer the module to the target file system

Kernel Modules Details

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Should Your Functionality Be an Application or

Kernel Module?

Kernel

Consider the following comparison with an application being
the default

Application Kernel Module

Runs in user space Runs in kernel space

Perform a task from

beginning to end

Registers itself in order to serve

future requests

Linked to the appropriate

library such as glibc

Linked only to the kernel

The only functions it can call are

those exported by the kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

A First Simple Module – Hello World

Some basic include files are

needed for it to compile

The initialization function

simple_init() can register different

types of facilities, including

different kinds of devices, file

systems, and more

The exit function simple_exit() can

unregister interfaces and returns

all resources to the system

module_init and module_exit Adds

a special section to the module’s

object code stating where the

module’s initialization and exit

functions are to be found

#include <linux/init.h>

#include <linux/module.h>

static int __init simple_init(void)

{

 printk(KERN_ALERT "Hello World\n");

 return 0;

}

static void __exit simple_exit(void)

{

 printk(KERN_ALERT "Goodbye\n");

}

module_init(simple_init);

module_exit(simple_exit);

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

Petalinux will create the makefile and a module skeleton for a

kernel module using the petalinux-create command

– petalinux-create –t modules –n simple --enable

– The module is created in the components/modules/simple directory

– The module can only be disabled from building thru the petalinux

configuration process

Petalinux will build the kernel module when the software system

is built

– Or it can build it only by specifying the module in the root filesystem

There is documentation in the kernel tree describing the build

process (Documentation/kbuild/modules.txt)

It is possible to build a module without a makefile

– make ARCH=arm -C <kernel directory> M=$PWD

– The kernel tree needs to have been configured and prepared to allow a

module to be built against it

Petalinux and Kernel Modules

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

An easy way to test a module is to FTP the module to the embedded

target assuming the target has an FTP server running

– The Petalinux root file system includes FTP so that it is ready to use

– FTP under Petalinux defaults to the /var/ftp directory

– It is easy to insert the module from the /var/ftp directory

The module is loaded using the insmod or modprobe command

– The modprobe command loads modules from a standard path in the root file

system (/lib/modules/*) and also loads dependent modules

– The insmod command only loads the specified module

The module is unloaded using the rmmod command, then a new

version of the module can be inserted

A buggy module can hang the kernel such that a reboot is needed

Character device drivers are easy to test from the command line shell

with cat, echo, and dd

Testing A Kernel Module

Kernel

Kernel Runtime Configuration Concepts Device Drivers Debugging

The principle of the Device Tree is to separate a large part of the

hardware description from the kernel sources

Device Tree allows a single kernel image to run on different boards

with the differences being described in the device tree

This mechanism takes its roots from OpenFirmware (OF) used on

PowerPC platforms. This is why the “of” is part of some kernel

functions.

Device Tree is a tree of nodes that models the hierarchy of devices in

the system, from the devices inside the processor to the devices on

the board

Each node can have a number of properties describing various

properties of the devices: addresses, interrupts, clocks, etc.

Written in a specialized language, the Device Tree source code is

compiled into a Device Tree Blob by the Device Tree Compiler (DTC)

Device Tree In A Nutshell – Page 1

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

The DTC checks the device tree syntax but the semantics of the

device tree are checked at runtime by the kernel and drivers

At boot time, the kernel is given a compiled device tree, referred to

as a Device Tree Blob, which is parsed to instantiate all the devices

described in the device tree

Device trees are located in the kernel tree at arch/<arm or

microblaze>/boot/dts

The device tree compiler is part of the Linux kernel tree

Some key properties in a device tree node, referred to as bindings

– The compatible property is used to bind a device with a device driver

– The interrupts property contains the interrupt number used by the device

– The reg property contains the memory range used by the device

There is limited documentation for the device tree bindings for each

device such that driver code inspection may be necessary

– The docs are in the kernel tree at Documentation/devicetree/bindings

Device Tree In A Nutshell – Page 2

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

A simple example below illustrates a node of a device tree

– An AMBA bus with a GPIO that has registers mapped to 0x4120000 and is

using interrupt 91

• 91 – 32 = 59, where 32 is the first Shared Peripheral Interrupt

– The device is compatible with a driver containing a matching compatible string

of “xlnx,simple”

– The device driver source code may be the only way to really understand what

properties it is expecting from the device tree

Device Tree Details and A Simple Example

 ps7_axi_interconnect_0: amba@0 {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = "xlnx,ps7-axi-interconnect-1.00.a", "simple-bus";

 ranges ;

 axi_gpio_0: gpio@41200000 {

 #gpio-cells = <2>;

 compatible = “xlnx,simple";

 gpio-controller ;

 interrupt-parent = <&ps7_scugic_0>;

 interrupts = <0 59 4>;

 reg = <0x41200000 0x10000>;

 xlnx,is-dual = <0x1>;

 } ;

 };

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

It’s no longer just *.dts files, now there are *.dtsi files

The dtsi files are included files while the dts file is the final device

tree

This is a nice feature the Linux kernel has had for several years

that Xilinx was not using (yes it is a change that you need to deal

with)

A dts file includes dtsi files and the inclusion process works by

overlaying the tree of the including file over the tree of the included

file

When properties are repeated in dtsi files the last one is the final

The PL and PS are separate DTSI files while there is top level dts

file that includes them

The device tree compiler can be used to create the final device tree

which is handy for debug (by specifying DTS input and output)

Device Tree – Breaking News for 2014.2

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

ps7_ttc_1: ps7-ttc@0xf8002000 {

 clocks = <&clkc 6>;

 compatible = "xlnx,ps7-ttc-1.00.a";

 interrupt-parent = <&ps7_scugic_0>;

 interrupts = <0 37 4>,<0 38 4>,<0 39 4>;

 reg = <0xF8002000 0x1000>;

 status = "disabled";

} ;

Device Tree – Inclusion Example

/include/ “ps.dtsi”

&ps7_ttc_1 {

 compatible = "xlnx,psttc", "generic-uio";

 status = "okay";

};

ps7_ttc_1: ps7-ttc@0xf8002000 {

 clocks = <&clkc 6>;

 compatible = "xlnx,psttc", "generic-uio";

 interrupt-parent = <&ps7_scugic_0>;

 interrupts = <0 37 4>, <0 38 4>, <0 39 4>;

 reg = <0xF8002000 0x1000>;

 status = “okay";

} ;

+

=

ps.dtsi (included file) system-top.dts (including file)

The result for the

duplicated (red)

properties is the same

as the including file.

Note the “&” used to reference an

existing node (rather than

creating a new node

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

There are a lot of technical

details not covered in this

presentation, as Device Tree

could be a complete

presentation by itself

Now there are some good

references such as a “Device

Tree For Dummies” PDF by

Thomas Petazzoni

You need to know the basics for

device driver operation, but don’t

have to be an expert

Device Tree – Where To Find More Details

Runtime Configuration

Kernel Runtime Configuration Concepts Device Drivers Debugging

Stop here and do Lab 1

– Get board setup, copy images to the SD card, boot Linux

– Verify network connectivity with host

– Verify FTP working from host to board

– Create a basic kernel module using Petalinux

– Build it and test it on the board

Lab 1

Kernel Runtime Configuration Concepts Device Drivers Debugging

Devices in the kernel are block or character devices and are

identified using a major and a minor number

The major number indicates the family of the device

The minor number indicates the number of the device to allow

multiple instances of a major device type

Major and minor numbers can be statically or dynamically allocated

– The statically allocated numbers are typically identical across Linux systems

Device Nodes are documented in the kernel tree at

Documentation/devices.txt

Device Nodes

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Most system objects in UNIX are represented as files

This allows applications to manipulate system objects with the

normal file operations (open, read, write, close, etc.)

Devices are represented as files to the applications through

device files

A device file is a special type of file that associates a file name

visible to userspace applications to the triplet (type, major,

minor) that the kernel understands

Device files are stored in the /dev directory of the root file system

Device Files

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Device File Examples

Device files in the file system are illustrated below (ls /dev –al)

Example C code that uses the file API to write data to a serial port

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Device files can be created manually using the mknod command

– mknod /dev/<device> [c|b] major minor

– Needs root privileges

Components can be added to create/remove device files

automatically when devices appear and disappear

– devtmpfs virtual filesystem (built into the Xilinx kernel by default)

– udev, solution used by desktop and server Linux systems

• Udev runs as a daemon and listens for uevents the kernel sends out when a new

device is initialized or removed from the system

– mdev, a lighter solution than udev, provided in BusyBox

• BusyBox combines tiny versions of many common UNIX utilities into a single

small executable. It provides replacements for most of the utilities you usually

find in GNU fileutils, shellutils, etc.

Device File Creation

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Hardware devices may be connected through a bus allowing

enumeration, hotplugging, or providing unique identifiers for devices

(such as PCI, PCIe and USB)

On embedded systems, devices are often not connected through a

bus which allows the devices to be uniquely identified.

– Many devices are directly part of a system-on-chip: UARTs, Ethernet

controllers, SPI or I2C controllers, graphic or audio devices, etc.

In this case devices, instead of being dynamically detected, must be

statically described in either the kernel source code or the device

tree

The platform bus, a software abstraction, was created to handle such

devices. It supports platform drivers that handle platform devices.

The platform bus works like other buses (USB, PCI), except that

devices are enumerated statically rather than being discovered

dynamically

Platform Devices

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

As platform devices cannot be detected dynamically, they are

defined statically using a device tree

Platform devices can also be defined in source code (as was

done before device tree in the ARM kernel)

– This is not typically done anymore as device tree operation is encouraged

Each device managed by a particular driver typically uses

different hardware resources such as interrupts and I/O

addresses

Device tree processing in the kernel is responsible for adding

platform devices to the platform bus

Platform Devices And Device Tree

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

A platform driver is a device driver for a specific platform device on the

platform bus

– Most Xilinx Linux device drivers used by customers are platform drivers

A platform driver does not inherently have any interface to user space

without hooking into a kernel framework, such as the character device

framework

– The name platform only specifies the bus (the platform bus) that the device is

located on

– Character, block, and network device drivers can all be platform device drivers if

the device they support is located on the platform bus

Platform drivers follow the standard driver model convention except

discovery/enumeration is handled outside the drivers

– In ARM and Microblaze Linux architectures, device tree processing does the

discovery/enumeration of the platform bus

Platform devices and drivers are described in the kernel tree at

Documentation/driver-model/platform.txt

Platform Driver

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

A Platform driver is connected to the kernel by the

platform_driver_register() function

The kernel calls the probe() function of the driver when it

discovers the corresponding platform device

The probe() function is responsible for initializing the device,

mapping I/O memory, and registering the interrupt handlers

– The bus infrastructure provides methods to get the addresses, interrupt

numbers and other device-specific information

The probe() function also registers the device to the kernel

framework

– An example framework is the character device processing for a character

driver

Platform Driver Initialization

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

The kernel calls the remove() function of the driver when the

corresponding platform device is no longer used by the kernel

The remove() function is responsible for unregistering the device

from the kernel framework and shuting it down

A platform driver is disconnected from the kernel by the

platform_driver_unregister() function

Platform Driver Exit

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

The platform driver has access to the I/O resources (memory

address and interrupt) in the device tree through a kernel API

This is an area of the API that has been changing such that you

can see other methods which may require more effort

platform_get_resource() gets the memory range for the device

from the device tree

platform_get_irq() gets the interrupt for the device from the

device tree

These kernel functions automatically read standard platform

device parameters from the platform device in the device tree

Other non-standard or user defined parameters can be read from

the device tree using other kernel functions named of_*

Platform Driver Resources – Page 1

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

devm_ioremap_resource() maps the physical memory range of

the device into the virtual memory map

– The memory attributes for this memory range default to non-cached

devm_request_irq() connects the interrupt handler to the

interrupt processing of the kernel

The devm*() functions of the kernel framework are kernel

managed resources which the kernel tracks and then

automatically handles them when the device goes away

Platform Driver Resources – Page 2

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Platform Device Driver In A Kernel Module

Starting with a simple kernel module

1. Make it a simple empty platform

driver

2. Platform driver simple_driver is

connected to the kernel by the

platform_driver_register() function

3. Platform driver simple_driver is

disconnected from the kernel by the

platform_driver_unregister() function

The module initialization function

simple_init() is called when the

module is inserted

The module exit function simple_exit()

is called when the module is removed

static struct platform_driver simple_driver = {

};

static int __init simple_init(void)

{

 return platform_driver_register(&simple_driver);

}

static void __exit simple_exit(void)

{

 platform_driver_unregister(&simple_driver);

}

module_init(simple_init);

module_exit(simple_exit);

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Platform Devices Driver Basics

static int simple_probe(struct platform_device *pdev)

{

}

static int simple_remove(struct platform_device *pdev)

{

}

static struct of_device_id simple_of_match[] = {

 { .compatible = “xilinx,simple", },

 { /* end of list */ },

};

static struct platform_driver simple_driver = {

 .driver = {

 .name = DRIVER_NAME,

 .owner = THIS_MODULE,

 .of_match_table = simple_of_match,

 },

 .probe = simple_probe,

 .remove = simple_remove,

};

1. Create the simple_probe() and

simple_remove() functions which

will be called by the kernel when

the driver is bound to a device

2. Create the simple_of_match data

structure which is used to bind

the driver to the device and

matches the device tree

3. Create the platform driver data

structure describing the platform

driver simple_driver

4. The compatible member of

simple_of_match data is

connected to the kernel in the

structure simple_driver

5. The simple_probe() and

simple_remove() functions are

connected to the kernel in the

structure simple_driver

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Platform Device Driver Memory/Interrupt Details

Get the device memory range from the device tree by calling

platform_get_resource()

The devm_ioremap_resource() function is called to map the device

physical memory into the virtual address space

Get the interrupt number from the device tree by calling

platform_get_irq()

The interrupt function simple_irq() is connected to the kernel by calling

devm_request_irq() function

int simple_irq() { };

int simple_probe()

{

 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 base_address = devm_ioremap_resource(dev, resource);

 irq = platform_get_irq(pdev, 0);

 devm_request_irq(dev, irq, &simple_irq, 0, DRIVER_NAME, lp);

}

 A simple

example

without error

processing

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Character drivers can be useful for many customer IP blocks

From the point of view of an application, a character device is

essentially a file

The driver of a character device implements operations that let

applications access the device as a file: open, close, read, write,

etc.

A character driver implements the operations in the struct

file_operations structure and registers them

The Linux virtual filesystem layer calls the driver's operations

when a userspace application makes the corresponding system

call

A platform device driver can also be a character device driver if it

implements the interface and registers with the kernel framework

Character Device Driver

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

There are a number of operations that a character device can

optionally support

– The open(), read(), write() and release() functions are typically

implemented as a minimum

open() function

– Called when a userspace application opens a device file

– Contains details such as the current position, the opening mode, etc.

– Has a void *private_data pointer that one can freely use

release() function

– Called when userspace application closes the file

ioctl() function

– Called by a userspace application to perform some special I/O operation

which does not fit neatly into the read/write interface of a character device

– Examples might be to control the baud rate of the serial port such that no

data is sent through the serial port, but its configuration is altered

Character Device Driver File Operations

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

read() function

– Called when a userspace application calls the read() library function for the

device

– Reads data from the device, writes a specified maximum number of bytes

in the user-space buffer, and updates the file status

– Returns the number of bytes read

– Can block when there isn't enough data to read from the device

write() function

– Called when a userspace application calls the write() library function for

the device

– Reads a specified number of bytes from a userspace buffer, writes the

data to the device, updates the file status

– Returns the number of bytes written

– Can block when the device is not ready to accept the data

File Operations, Read and Write Details

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Moving data between userspace

and kernel space is the primary

method for I/O since the application

is in userspace and the device

drivers are in kernel space

The copy_to_user() function copies

a buffer of bytes from kernel space

to userspace

The copy_from_user() function

copies a buffer of bytes from

userspace to kernel space

Functions also exist for copying a

single datum

Zero copy methods exist but are

more complex and less typical

Copying Data Between Kernel and User Space

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

A character device framework is provided by the kernel. This

framework allows the device to be accessed using the file I/O

operations.

alloc_chrdev_region() allocates a character device number

unregister_chrdev_region() frees a previously allocated character

device number

cdev_init() initializes the character device structure

cdev_add() adds the character device to the kernel

cdev_del() removes the character device from the kernel

Character Device Driver Details

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Creating A Character Device Simplified Example

int simple_open() { };

int simple_write() { };

int simple_read() { };

int simple_release() { };

static struct file_operations simple_fops = {

 .owner = THIS_MODULE,

 .open = simple_open,

 .write = simple_write,

 .read = simple_read,

 .release = simple_release,

};

int simple_probe()

{

 struct cdev cdev;

 cdev_init(&cdev, &simple_fops);

 cdev_add(&cdev, ….);

}

Create empty file operation

functions simple_open(),

simple_write(), simple_read(),

simple_release()

Create the file_operations data

structure simple_fops

The platform driver simple_probe()

function calls the character device

functions to create the character

device

The cdev_init() function initializes

the character device including

setting up the file functions such as

simple_read() and simple_write()

The cdev_add() function connects

the character device to the kernel

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

A device node, as reviewed earlier, is needed to allow user space

to communicate with kernel space

Many people create device nodes manually as they were done in

the past, but using the API takes care of this

A class for the device in /sys is needed to allow a device node in

/dev to be automatically created

– The class for the device in /sys is seen as a directory

The driver creates the class using the kernel API.

– class_create() creates a class in the /sys/class directory

– class_destroy() destroys the class

The driver creates the device node using the kernel API.

– device_create() creates a device node in the /dev directory

– device_destroy() removes a device node in the /dev directory

Creating The Device Node Details

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

The ioctl interface of device drivers is an older interface can be

less preferred in the kernel community

– It is hard to document the interface for each driver which is typically unique

File attributes in the sys filesystem is the preferred method rather

than ioctl

– They are more self documenting

– They are easier to use as they can be accessed from a command line

using utilities like cat, echo and dd

– For example, cat /sys/devices/amba.0/41200000.gpio/irqreg displays the

contents of the interrupt register for the GPIO device

– Slower to access due to open and close

device_create_file() creates a file attribute under the current

device in /sys

device_remove_file() removes a file attribute under the current

device in /sys

Sys FileSystem Attributes Rather Than Ioctl

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Creating A Sys File Attribute Details

A file attribute is created in the directory of the device in

filesystem at /sys/devices/<bus>/<device>

– The path is dependent on the node of the device in the device tree

Before calling device_create_file() to create the attribute, the

attribute data structure must be created

The macro DEVICE_ATTR() is used to create the attribute and

requires the following inputs.

– A name for the attribute in the filesystem

– Permissions which determine if the attribute can be read and/or written

– A function to read the data from the driver

– A function to write the data into the driver

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

Creating A File Attribute Simplified Example

simple_show_reg() { }

simple_store_reg() { }

DEVICE_ATTR(irqreg, S_IWUSR | S_IRUGO,

 simple_show_reg, simple_store_reg);

simple_probe()

{

 device_create_file(dev, &dev_attr_irqreg);

}

Create the empty access functions

simple_show_reg() and

simple_store_reg() which will be

called to read/write the data

Create the attribute data structure for

attribute irqreq which has read and

write access and uses the access

functions just created

The platform driver simple_probe()

function creates the file attribute

named irqreg in the sys filesystem

under the device by calling

device_create_file()

The access functions,

simple_show_reg() and

simple_store_reg() are connected to

the kernel

The permissions

to allow read/write

A platform driver creates a file attribute /sys/devices/<bus>/<device>/irqreg which

can be read and written from user space

Macros in Linux can be less obvious as details

are hidden. DEVICE_ATTR() causes the data

structure dev_attr_irqreg to be created.

Device Drivers

Kernel Runtime Configuration Concepts Device Drivers Debugging

printk()
– Kernel version of printf()

– Priority of kernel messages (log level) can be specified with the following
symbols defined in <linux/kernel.h>

• KERN_EMERG: Emergency message

• KERN_ALERT: Alert message

• KERN_CRIT: Critical situation

• KERN_ERR: Error report

• KERN_WARNING: Warning message

• KERN_NOTICE: Noticeable message

• KERN_INFO: Information

• KERN_DEBUG: Debug message

– Does not support floating point numbers

– Example:
printk(KERN_DEBUG “line %s:%i\n”, __FILE__, __LINE__);

The log level can be altered from the command line in the proc file

system

– “echo 7 > /proc/sys/kernel/printk” changes the current level so all messages

are printed

Debugging With Printk

Debugging

Kernel Runtime Configuration Concepts Device Drivers Debugging

The sys and proc file systems contain a lot of good information

/proc/interrupts shows the interrupt number assigned to a device

and the number of interrupts that have occurred

/proc/device-tree has the nodes of the device tree

– Some nodes are binary such that hexdump must be used to view them

/proc/cmdline has the kernel command line, which can be handy

/proc/iomem shows the I/O memory claimed by device drivers

Other Debug Tools

Debugging

Kernel Runtime Configuration Concepts Device Drivers Debugging

Linux Device Drivers Version 3

– https://lwn.net/Kernel/LDD3/

Free Electrons

– http://free-electrons.com/

– http://lxr.free-electrons.com/

Linux Foundation

– http://training.linuxfoundation.org/free-linux-training/linux-training-videos/how-

to-build-character-drivers-for-the-linux-kernel

– http://training.linuxfoundation.org/free-linux-training/linux-training-

videos/interrupt-handling-in-linux-device-drivers

References

Kernel Runtime Configuration Concepts Device Drivers Debugging

Complete a platform character device driver

– Get a platform driver working

– Add character device functionality

– Build the driver

– Test the driver on the board

Lab 2

