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Make you aware of the architecture and frameworks of Linux 

Teach you how to read a simple device driver at a high level and 

understand its functionality 

Point you to good reference material where you can learn all the 

details 

– The references are in the last slide 

– Linux Device Drivers is a book that is heavily used by all Linux kernel 

developers 

The following are not goals of this training: 

– Will not make you a device driver developer 

– Will not make you ready to submit a driver upstream to the kernel community 

• The APIs vary with kernel versions and it is hard to stay up to date on the coding 

guidelines for upstreaming unless you are actively doing it 

Goals Of This Training 
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Concepts Review 

Kernel Modules 

Kernel Frameworks 

Device Tree 

Platform Device Driver 

Character Device Driver 

Debugging  

 

Outline 
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A lot of good documentation exists in the public domain if you 

know where to find it 

A lot of the information in this presentation is based on others’ 

work including Free Electrons 

Free Electrons provides excellent training materials for free and 

licensed as Creative Commons CC-BY-SA 

– http://free-electrons.com/docs 

 

Introduction 

License: Creative Commons Attribution - Share Alike 3.0 

–  http://creativecommons.org/licenses/by-sa/3.0/legalcode  

You are free: 

– to copy, distribute, display, and perform the work 

– to make derivative works 

– to make commercial use of the work 

Under the following conditions: 

– Attribution. You must give the original author credit. 

– Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license 

identical to this one. 

– For any reuse or distribution, you must make clear to others the license terms of this work. 

– Any of these conditions can be waived if you get permission from the copyright holder. 

Your fair use and other rights are in no way affected by the above. 

 

http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
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Virtual memory management is a key aspect of Linux 

– The Memory Management Unit (MMU) of the processor translates virtual 

addresses to physical addresses 

Linux divides virtual memory into kernel space and user space 

– Kernel space is the memory area for the kernel and device drivers 

• Kernel space is the top 1 GB of memory, 0xC0000000 to 0xFFFFFFFF 

– User space is the memory area for user application software 

• User space is the bottom 3 GB of memory, 0 to 0xBFFFFFFF 

– Other kernel/user space memory configurations are configurable in the kernel 

such as 2 GB kernel and 2 GB user space 

– Kernel space virtual address 0xC0000000 maps to physical address zero 

Linux uses the processor modes to create privilege levels 

– The kernel executes at a higher privilege level than user space code such that it can 

access any resources in the system 

– Applications execute at a lower privilege level such that they must use the kernel to get 

to the restricted resources in the system 

Linux Architecture 101 

Concepts 
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Library functions run in user space and provide a more convenient interface 

for the programmer 

– Linux applications require a C library to build which is provided by the tools 

– The Xilinx Linux GNU tools are based on the GNU C Library (glibc) 

– The Xilinx standalone GNU tools are based on newlib library rather than glibc 

System calls run in kernel mode on the user’s behalf and are provided by the 

kernel itself 

A library function calls one or more system calls, and these system calls 

execute in supervisor mode since they are part of the kernel itself 

Once the system call completes its task, it returns and execution is 

transferred back to user mode 

The user space application is typically blocked until the library function and 

system call return (just like a function call) 

System calls may interact with the kernel proper, or with specific drivers and 

frameworks of the kernel 

Linux Architecture 101 – Page 2 

Concepts 
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Linux Architecture 101 – Page 3 

User Space 

Kernel Space 

Concepts 
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Linux Architecture 101 – Page 4 

Concepts 

* Illustration taken from http://en.wikipedia.org/wiki/Microkernel 

Linux, A Monolithic Kernel 

based Operating System 

Microkernel based Operating 

System (such as FreeRTOS) 



Kernel Runtime Configuration Concepts Device Drivers Debugging 

You don’t have to be a kernel expert, but understanding some 

terms will help a lot 

The Linux Device model is built around the concept of busses, 

devices and drivers. 

All devices in the system are connected to a bus of some kind.   

A bus may be a software abstraction rather than a real bus. 

Busses primarily exist to gather similar devices together and 

coordinate initialization, shutdown and power management 

When a device in the system is found to match a driver, they are 

bound together. The specifics about how to match devices and 

drivers are bus-specific. 

 

Linux Device Model (Chapter 14 LDD) 

Kernel 
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Network devices  

– These are represented as network interfaces, visible in userspace using 

the ifconfig utility 

Block devices  

– These are used to provide userspace applications access to raw storage 

devices (hard disks, USB keys)  

– Visible to the applications as device files in /dev 

Character devices 

– These are used to provide userspace applications access to all other types 

of devices (input, sound, graphics, serial, etc.) 

– They are also visible to the applications as device files in /dev 

– Many devices are character devices and a lot of user IP could be 

accessed as a character device 

MTD devices 

– Flash memory is a unique device type that has translations to allow them 

to be used as block and character devices 

 

 

 

Linux Device Types 

Kernel 
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Many device drivers are not directly implemented as character 

devices or block devices. They are implemented under a framework, 

specific to a device type (framebuffer, V4L, serial, etc.). 

 The framework factors out the common parts of drivers for the 

same type of devices to reduce code duplication 

From userspace, many are still seen as normal character devices 

The frameworks provide a coherent userspace interface (ioctl 

numbering and semantics, etc.) for every type of device, regardless 

of the driver 

– The network framework of Linux provides a socket API such that an 

application can connect to a network using any network driver without 

knowing the details of the network driver 

• sockfd = socket(AF_INET, SOCK_STREAM, 0); 

 

 

 

Linux Kernel Frameworks 

Kernel 
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Linux Kernel Layers Focused on Frameworks 

A driver is always 

interfacing with: 

– A framework that allows 

the driver to expose the 

hardware features to 

userspace applications 

– A bus infrastructure (part 

of the device model), to 

detect/communicate with 

the hardware 

Kernel 
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Example Frameworks 

Kernel 

Linux 

Frameworks 
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System and kernel information 

– Presented to user space application as virtual file systems 

– Created dynamically and only exist in memory 

Two virtual filesystems most known to users 

– proc, mounted on /proc, contains operating system related information 

(processes, memory management parameters...) 

• This is an older mechanism that became somewhat chaotic 

– sysfs, mounted on /sys, contains a representation of the system as a set of 

devices and buses together with information about these devices 

• This is the newer mechanism and is the preferred place to add system 

information 

 

 

 

 

Virtual File Systems - Overview 

Kernel 
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The sysfs virtual filesystem is a mechanism for the kernel to 

export operating details to user space 

The kernel exports the following items to user space 

– The bus, device, drivers, etc. structures internal to the kernel 

– /sys/bus/ contains the list of buses 

– /sys/devices/ contains the list of devices 

– /sys/class enumerates devices by class (net, input, block...), whatever the 

bus they are connected to 

Used for example by udev to provide automatic module loading, 

firmware loading, device file creation, etc. (more details on udev later) 

Take your time to explore /sys on your workstation 

Virtual File Systems - sysfs 

Kernel 
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The Linux kernel by design is a monolithic kernel, but is also modular 

The kernel can dynamically load and unload parts of the kernel  code 

which are referred to kernel modules 

Modules allow the kernel capabilities to be extended without  

modifying the rest of the code or rebooting the kernel 

A kernel module can be inserted or removed while the kernel is  

running 

– It can be inserted manually by a root user or from a user space script at startup 

Kernel modules help to keep the kernel size to a minimum and makes 

the kernel very flexible 

Kernel modules are useful to reduce boot time since time is not spent 

initializing devices and kernel features that are only needed later 

Once loaded, kernel modules have full control and privileges in the 

system such that only the root user can load and unload modules 

 

Kernel Modules 

Kernel 
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Naming Convention: <file name>.ko 

Location: /lib/modules/<kernel_version> on the root filesystem 

Device drivers can be kernel modules or statically built into the 

kernel image 

– The default kernel build from Xilinx generally builds most drivers into the 

kernel statically so they are started automatically 

A kernel module is not necessarily a device driver; it is an extension 

of the kernel 

Kernel modules are loaded into virtual memory of the kernel 

– Kernel virtual space is limited, but can be adjusted on the command line 

Building a device driver as a module makes the development easier 

since it can be loaded, tested, and unloaded without rebooting the 

kernel 

– FTP and NFS work well to transfer the module to the target file system 

Kernel Modules Details 

Kernel 
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Should Your Functionality Be an Application or 

Kernel Module? 

Kernel 

Consider the following comparison with an application being 
the default  

 

Application Kernel Module 

 

Runs in user space Runs in kernel space 

Perform a task from 

beginning to end 

Registers itself in order to serve 

future requests 

Linked to the appropriate 

library such as glibc 

Linked only to the kernel 

The only functions it can call are 

those exported by the kernel 
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A First Simple Module – Hello World 

Some basic include files are 

needed for it to compile 

The initialization function 

simple_init() can register different 

types of facilities, including 

different kinds of devices, file 

systems, and more 

The exit function simple_exit() can 

unregister interfaces and returns 

all resources to the system 

module_init and module_exit Adds 

a special section to the module’s 

object code stating where the 

module’s initialization and exit 

functions are to be found 

 

#include <linux/init.h> 

#include <linux/module.h> 

 

static int __init simple_init(void) 

{ 

    printk(KERN_ALERT "Hello World\n"); 

    return 0; 

} 

 

static void __exit simple_exit(void) 

{ 

    printk(KERN_ALERT "Goodbye\n"); 

} 

 

module_init(simple_init); 

module_exit(simple_exit); 

Kernel 
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Petalinux will create the makefile and a module skeleton for a 

kernel module using the petalinux-create command 

– petalinux-create –t modules –n simple --enable 

– The module is created in the components/modules/simple directory 

– The module can only be disabled from building thru the petalinux 

configuration process 

Petalinux will build the kernel module when the software system 

is built 

– Or it can build it only by specifying the module in the root filesystem 

There is documentation in the kernel tree describing the build 

process (Documentation/kbuild/modules.txt) 

It is possible to build a module without a makefile 

– make ARCH=arm -C <kernel directory> M=$PWD 

– The kernel tree needs to have been configured and prepared to allow a 

module to be built against it 

Petalinux and Kernel Modules 

Kernel 
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An easy way to test a module is to FTP the module to the embedded 

target assuming the target has an FTP server running  

– The Petalinux root file system includes FTP so that it is ready to use 

– FTP under Petalinux defaults to the /var/ftp directory 

– It is easy to insert the module from the /var/ftp directory 

The module is loaded using the insmod or modprobe command 

– The modprobe command loads modules from a standard path in the root file 

system (/lib/modules/*) and also loads dependent modules 

– The insmod command only loads the specified module 

The module is unloaded using the rmmod command, then a new 

version of the module can be inserted 

A buggy module can hang the kernel such that a reboot is needed 

Character device drivers are easy to test from the command line shell 

with cat, echo, and dd 

 

Testing A Kernel Module  

Kernel 
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The principle of the Device Tree is to separate a large part of the 

hardware description from the kernel sources 

Device Tree allows a single kernel image to run on different boards 

with the differences being described in the device tree 

This mechanism takes its roots from OpenFirmware (OF) used on 

PowerPC platforms. This is why the “of” is part of some kernel 

functions. 

Device Tree is a tree of nodes that models the hierarchy of devices in 

the system, from the devices inside the processor to the devices on 

the board 

Each node can have a number of properties describing various 

properties of the devices: addresses, interrupts, clocks, etc. 

Written in a specialized language, the Device Tree source code is 

compiled into a Device Tree Blob by the Device Tree Compiler (DTC) 

 

 

 

 

 

 

 

Device Tree In A Nutshell – Page 1 

Runtime Configuration 
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The DTC checks the device tree syntax but the semantics of the 

device tree are checked at runtime by the kernel and drivers 

At boot time, the kernel is given a compiled device tree, referred to 

as a Device Tree Blob, which is parsed to instantiate all the devices 

described in the device tree 

Device trees are located in the kernel tree at arch/<arm or 

microblaze>/boot/dts 

The device tree compiler is part of the Linux kernel tree 

Some key properties in a device tree node, referred to as bindings 

– The compatible property is used to bind a device with a device driver 

– The interrupts property contains the interrupt number used by the device 

– The reg property contains the memory range used by the device 

There is limited documentation for the device tree bindings for each 

device such that driver code inspection may be necessary 

– The docs are in the kernel tree at Documentation/devicetree/bindings 

 

 

 

Device Tree In A Nutshell – Page 2 

Runtime Configuration 
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A simple example below illustrates a node of a device tree 

– An AMBA bus with a GPIO that has registers mapped to 0x4120000 and is 

using interrupt 91  

• 91 – 32 = 59, where 32 is the first Shared Peripheral Interrupt 

– The device is compatible with a driver containing a matching compatible string 

of “xlnx,simple” 

– The device driver source code may be the only way to really understand what 

properties it is expecting from the device tree 

 

 

 

 

 

 

Device Tree Details and A Simple Example 

 ps7_axi_interconnect_0: amba@0 { 

  #address-cells = <1>; 

  #size-cells = <1>; 

  compatible = "xlnx,ps7-axi-interconnect-1.00.a", "simple-bus"; 

  ranges ; 

  axi_gpio_0: gpio@41200000 { 

   #gpio-cells = <2>; 

   compatible = “xlnx,simple"; 

   gpio-controller ; 

   interrupt-parent = <&ps7_scugic_0>; 

   interrupts = <0 59 4>; 

   reg = <0x41200000 0x10000>; 

   xlnx,is-dual = <0x1>; 

  } ; 

 }; 

Runtime Configuration 
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It’s no longer just *.dts files, now there are *.dtsi files 

The dtsi files are included files while the dts file is the final device 

tree 

This is a nice feature the Linux kernel has had for several years 

that Xilinx was not using (yes it is a change that you need to deal 

with) 

A dts file includes dtsi files and the inclusion process works by 

overlaying the tree of the including file over the tree of the included 

file 

When properties are repeated in dtsi files the last one is the final 

The PL and PS are separate DTSI files while there is top level dts 

file that includes them 

The device tree compiler can be used to create the final device tree 

which is handy for debug (by specifying DTS input and output) 

 

 

Device Tree – Breaking News for 2014.2 

Runtime Configuration 
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ps7_ttc_1: ps7-ttc@0xf8002000 { 

  clocks = <&clkc 6>; 

  compatible = "xlnx,ps7-ttc-1.00.a"; 

  interrupt-parent = <&ps7_scugic_0>; 

  interrupts = <0 37 4>,<0 38 4>,<0 39 4>; 

  reg = <0xF8002000 0x1000>; 

  status = "disabled"; 

} ; 

Device Tree – Inclusion Example 

/include/ “ps.dtsi” 

 

&ps7_ttc_1 {  

  compatible = "xlnx,psttc", "generic-uio"; 

  status = "okay"; 

}; 

ps7_ttc_1: ps7-ttc@0xf8002000 { 

  clocks = <&clkc 6>; 

  compatible = "xlnx,psttc", "generic-uio"; 

  interrupt-parent = <&ps7_scugic_0>; 

  interrupts = <0 37 4>, <0 38 4>, <0 39 4>; 

  reg = <0xF8002000 0x1000>; 

  status = “okay"; 

} ; 

+ 

= 

ps.dtsi (included file) system-top.dts (including file) 

The result for the 

duplicated (red) 

properties is the same 

as the including file. 

 

Note the “&” used to reference an 

existing node (rather than 

creating a new node 

Runtime Configuration 
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There are a lot of technical 

details not covered in this 

presentation, as Device Tree 

could be a complete 

presentation by itself 

Now there are some good 

references such as a “Device 

Tree For Dummies” PDF by 

Thomas Petazzoni 

You need to know the basics for 

device driver operation, but don’t 

have to be an expert 

 

 

 

 

 

Device Tree – Where To Find More Details 

Runtime Configuration 
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Stop here and do Lab 1 

– Get board setup, copy images to the SD card, boot Linux 

– Verify network connectivity with host 

– Verify FTP working from host to board 

– Create a basic kernel module using Petalinux 

– Build it and test it on the board 

 

 

 

Lab 1 
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Devices in the kernel are block or character devices and are 

identified using a major and a minor number 

The major number indicates the family of the device 

The minor number indicates the number of the device to allow 

multiple instances of a major device type 

Major and minor numbers can be statically or dynamically allocated  

– The statically allocated numbers are typically identical across Linux systems 

Device Nodes are documented in the kernel tree at 

Documentation/devices.txt 

 

 

 

Device Nodes 

Device Drivers 
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Most system objects in UNIX are represented as files 

This allows applications to manipulate system objects with the 

normal file operations (open, read, write, close, etc.) 

Devices are represented as files to the applications through 

device files 

A device file is a special type of file that associates a file name 

visible to userspace applications to the triplet (type, major, 

minor) that the kernel understands 

Device files are stored in the /dev directory of the root file system 

 

Device Files 

Device Drivers 
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Device File Examples 

Device files in the file system are illustrated below (ls /dev –al) 

 

 

 

 

 

 

 

Example C code that uses the file API to write data to a serial port 

 

 

 

Device Drivers 
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Device files can be created manually using the mknod command 

– mknod /dev/<device> [c|b] major minor 

– Needs root privileges 

Components can be added to create/remove device files 

automatically when devices appear and disappear 

– devtmpfs virtual filesystem (built into the Xilinx kernel by default) 

– udev, solution used by desktop and server Linux systems 

• Udev runs as a daemon and listens for uevents the kernel sends out when a new 

device is initialized or removed from the system 

– mdev, a lighter solution than udev, provided in BusyBox 

• BusyBox combines tiny versions of many common UNIX utilities into a single 

small executable. It provides replacements for most of the utilities you usually 

find in GNU fileutils, shellutils, etc.  

 

Device File Creation 

Device Drivers 
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Hardware devices may be connected through a bus allowing 

enumeration, hotplugging, or providing unique identifiers for devices 

(such as PCI, PCIe and USB) 

On embedded systems, devices are often not connected through a 

bus which allows the devices to be uniquely identified.  

– Many devices are directly part of a system-on-chip: UARTs, Ethernet 

controllers, SPI or I2C controllers, graphic or audio devices, etc. 

In this case devices, instead of being dynamically detected, must be 

statically described in either the kernel source code or the device 

tree 

The platform bus, a software abstraction, was created to handle such 

devices. It supports platform drivers that handle platform devices. 

The platform bus works like other buses (USB, PCI), except that 

devices are enumerated statically rather than being discovered 

dynamically 

 

 

 

 

 

Platform Devices 

Device Drivers 
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As platform devices cannot be detected dynamically, they are 

defined statically using a device tree 

Platform devices can also be defined in source code (as was 

done before device tree in the ARM kernel) 

– This is not typically done anymore as device tree operation is encouraged 

Each device managed by a particular driver typically uses 

different hardware resources such as interrupts and I/O 

addresses 

Device tree processing in the kernel is responsible for adding 

platform devices to the platform bus 

 

 

Platform Devices And Device Tree 

Device Drivers 
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A platform driver is a device driver for a specific platform device on the 

platform bus 

– Most Xilinx Linux device drivers used by customers are platform drivers 

A platform driver does not inherently have any interface to user space 

without hooking into a kernel framework, such as the character device 

framework 

– The name platform only specifies the bus (the platform bus) that the device is 

located on 

– Character, block, and network device drivers can all be platform device drivers if 

the device they support is located on the platform bus 

Platform drivers follow the standard driver model convention except 

discovery/enumeration is handled outside the drivers 

– In ARM and Microblaze Linux architectures, device tree processing does the 

discovery/enumeration of the platform bus 

Platform devices and drivers are described in the kernel tree at 

Documentation/driver-model/platform.txt 

 

 

Platform Driver 

Device Drivers 
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A Platform driver is connected to the kernel by the 

platform_driver_register() function 

The kernel calls the probe() function of the driver when it 

discovers the corresponding platform device 

The probe() function is responsible for initializing the device, 

mapping I/O memory, and registering the interrupt handlers  

– The bus infrastructure provides methods to get the addresses, interrupt 

numbers and other device-specific information 

The probe() function also registers the device to the kernel 

framework  

– An example framework is the character device processing for a character 

driver 

 

 

 

Platform Driver Initialization 

Device Drivers 
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The kernel calls the remove() function of the driver when the 

corresponding platform device is no longer used by the kernel 

The remove() function is responsible for unregistering the device 

from the kernel framework and shuting it down 

A platform driver is disconnected from the kernel by the 

platform_driver_unregister() function  

 

 

Platform Driver Exit 

Device Drivers 
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The platform driver has access to the I/O resources (memory 

address and interrupt) in the device tree through a kernel API 

This is an area of the API that has been changing such that you 

can see other methods which may require more effort 

platform_get_resource() gets the memory range for the device 

from the device tree 

platform_get_irq() gets the interrupt for the device from the 

device tree 

These kernel functions automatically read standard platform 

device parameters from the platform device in the device tree 

Other non-standard or user defined parameters can be read from 

the device tree using other kernel functions named of_* 

 

Platform Driver Resources – Page 1 

Device Drivers 
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devm_ioremap_resource() maps the physical memory range of 

the device into the virtual memory map 

– The memory attributes for this memory range default to non-cached 

devm_request_irq() connects the interrupt handler to the 

interrupt processing of the kernel 

The devm*() functions of the kernel framework are kernel 

managed resources which the kernel tracks and then 

automatically handles them when the device goes away 

 

Platform Driver Resources – Page 2 

Device Drivers 
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Platform Device Driver In A Kernel Module 

Starting with a simple kernel module 

1. Make it a simple empty platform 

driver 

2. Platform driver simple_driver is 

connected to the kernel by the 

platform_driver_register() function 

3. Platform driver simple_driver is 

disconnected from the kernel by the 

platform_driver_unregister() function 

The module initialization function 

simple_init() is called when the 

module is inserted 

The module exit function simple_exit() 

is called when the module is removed 

static struct platform_driver simple_driver = { 

}; 

 

static int __init simple_init(void) 

{ 

 return platform_driver_register(&simple_driver); 

} 

 

static void __exit simple_exit(void) 

{ 

 platform_driver_unregister(&simple_driver); 

} 

 

module_init(simple_init); 

module_exit(simple_exit); 

Device Drivers 
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Platform Devices Driver Basics 

static int simple_probe(struct platform_device *pdev) 

{ 

} 

static int simple_remove(struct platform_device *pdev) 

{ 

} 

 

static struct of_device_id simple_of_match[] = {  

 { .compatible = “xilinx,simple", }, 

 { /* end of list */ }, 

}; 

 

static struct platform_driver simple_driver = {  

 .driver = {  

  .name = DRIVER_NAME, 

  .owner = THIS_MODULE,  

  .of_match_table = simple_of_match,  

 }, 

 .probe  = simple_probe,  

 .remove  = simple_remove, 

}; 

1. Create the simple_probe() and 

simple_remove() functions which 

will be called by the kernel when 

the driver is bound to a device 

2. Create the simple_of_match data 

structure which is used to bind 

the driver to the device and 

matches the device tree 

3. Create the platform driver data 

structure describing the platform 

driver simple_driver 

4. The compatible member of 

simple_of_match data is 

connected to the kernel in the 

structure simple_driver 

5. The simple_probe() and 

simple_remove() functions are 

connected to the kernel in the 

structure simple_driver 

Device Drivers 
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Platform Device Driver Memory/Interrupt Details 

 

Get the device memory range from the device tree by calling 

platform_get_resource() 

The devm_ioremap_resource() function is called to map the device 

physical memory into the virtual address space 

Get the interrupt number from the device tree by calling 

platform_get_irq() 

The interrupt function simple_irq() is connected to the kernel by calling 

devm_request_irq() function 

int simple_irq() { }; 

 

int simple_probe()  

{   

 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);

  

 base_address = devm_ioremap_resource(dev, resource);  

 

 irq = platform_get_irq(pdev, 0);  

 devm_request_irq(dev, irq, &simple_irq, 0, DRIVER_NAME, lp); 

} 

 A simple 

example 

without error 

processing 

Device Drivers 
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Character drivers can be useful for many customer IP blocks 

From the point of view of an application, a character device is 

essentially a file 

The driver of a character device implements operations that let 

applications access the device as a file: open, close, read, write, 

etc. 

A character driver implements the operations in the struct 

file_operations structure and registers them 

The Linux virtual filesystem layer calls the driver's operations 

when a userspace application makes the corresponding system 

call 

A platform device driver can also be a character device driver if it 

implements the interface and registers with the kernel framework 

 

 

 

 

 

Character Device Driver 

Device Drivers 



Kernel Runtime Configuration Concepts Device Drivers Debugging 

There are a number of operations that a character device can 

optionally support 

– The open(), read(), write() and release() functions are typically 

implemented as a minimum 

open() function 

– Called when a userspace application opens a device file 

– Contains details such as the current position, the opening mode, etc. 

– Has a void *private_data pointer that one can freely use 

release() function 

– Called when userspace application closes the file 

ioctl() function 

– Called by a userspace application to perform some special I/O operation 

which does not fit neatly into the read/write interface of a character device 

– Examples might be to control the baud rate of the serial port such that no 

data is sent through the serial port, but its configuration is altered 

 

Character Device Driver File Operations 

Device Drivers 
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read() function 

– Called when a userspace application calls the read() library function for the 

device 

– Reads data from the device, writes a specified maximum number of bytes 

in the user-space buffer, and updates the file status 

– Returns the number of bytes read 

– Can block when there isn't enough data to read from the device 

write() function 

– Called when a userspace application calls the write() library function for 

the device 

– Reads a specified number of bytes from a userspace buffer, writes the 

data to the device, updates the file status 

– Returns the number of bytes written 

– Can block when the device is not ready to accept the data 

 

 

File Operations, Read and Write Details 
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Moving data between userspace 

and kernel space is the primary 

method for I/O since the application 

is in userspace and the device 

drivers are in kernel space 

The copy_to_user() function copies 

a buffer of bytes from kernel space 

to userspace 

The copy_from_user() function 

copies a buffer of bytes from 

userspace to kernel space 

Functions also exist for copying a 

single datum 

Zero copy methods exist but are 

more complex and less typical 

Copying Data Between Kernel and User Space 

Device Drivers 
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A character device framework is provided by the kernel. This 

framework allows the device to be accessed using the file I/O 

operations. 

 

alloc_chrdev_region() allocates a character device number 

unregister_chrdev_region() frees a previously allocated character 

device number  

 

cdev_init() initializes the character device structure 

cdev_add() adds the character device to the kernel 

cdev_del() removes the character device from the kernel 

 

Character Device Driver Details 

Device Drivers 
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Creating A Character Device Simplified Example 

int simple_open() { }; 

int simple_write() { }; 

int simple_read() { }; 

int simple_release() { }; 

 

static struct file_operations simple_fops = { 

 .owner    = THIS_MODULE, 

 .open     = simple_open, 

 .write    = simple_write, 

 .read   = simple_read, 

 .release  = simple_release, 

}; 

int simple_probe()  

{ 

 struct cdev cdev; 

 cdev_init(&cdev, &simple_fops); 

 cdev_add(&cdev, ….); 

} 

Create empty file operation 

functions simple_open(), 

simple_write(),  simple_read(), 

simple_release() 

Create the file_operations data 

structure simple_fops 

The platform driver simple_probe() 

function calls the character device 

functions to create the character 

device 

The cdev_init() function initializes 

the character device including 

setting up the file functions such as 

simple_read() and simple_write() 

The cdev_add() function connects 

the character device to the kernel 

Device Drivers 
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A device node, as reviewed earlier, is needed to allow user space 

to communicate with kernel space 

Many people create device nodes manually as they were done in 

the past, but using the API takes care of this 

A class for the device in /sys is needed to allow a device node in 

/dev to be automatically created 

– The class for the device in /sys is seen as a directory 

The driver creates the class using the kernel API. 

– class_create() creates a class in the /sys/class directory 

– class_destroy() destroys the class 

The driver creates the device node using the kernel API. 

– device_create() creates a device node in the /dev directory  

– device_destroy() removes a device node in the /dev directory 

 

Creating The Device Node Details 
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The ioctl interface of device drivers is an older interface can be 

less preferred in the kernel community 

– It is hard to document the interface for each driver which is typically unique 

File attributes in the sys filesystem is the preferred method rather 

than ioctl 

– They are more self documenting 

– They are easier to use as they can be accessed from a command line 

using utilities like cat, echo and dd 

– For example, cat /sys/devices/amba.0/41200000.gpio/irqreg displays the 

contents of the interrupt register for the GPIO device 

– Slower to access due to open and close 

device_create_file() creates a file attribute under the current 

device in /sys 

device_remove_file() removes a file attribute under the current 

device in /sys 

Sys FileSystem Attributes Rather Than Ioctl 

Device Drivers 
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Creating A Sys File Attribute Details 

A file attribute is created in the directory of the device in 

filesystem at /sys/devices/<bus>/<device> 

– The path is dependent on the node of the device in the device tree 

Before calling device_create_file() to create the attribute, the 

attribute data structure must be created 

The macro DEVICE_ATTR() is used to create the attribute and 

requires the following inputs. 

– A name for the attribute in the filesystem 

– Permissions which determine if the attribute can be read and/or written 

– A function to read the data from the driver 

– A function to write the data into the driver 

Device Drivers 
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Creating A File Attribute Simplified Example 

simple_show_reg() { } 

simple_store_reg() { } 

 

DEVICE_ATTR(irqreg, S_IWUSR | S_IRUGO,  

  simple_show_reg, simple_store_reg); 

 

simple_probe() 

{ 

 device_create_file(dev, &dev_attr_irqreg); 

} 

Create the empty access functions 

simple_show_reg() and 

simple_store_reg() which will be 

called to read/write the data 

Create the attribute data structure for 

attribute irqreq which has read and 

write access and uses the access 

functions just created 

The platform driver simple_probe() 

function creates the file attribute 

named irqreg in the sys filesystem 

under the device by calling 

device_create_file()  

The access functions, 

simple_show_reg() and 

simple_store_reg() are connected to 

the kernel 

The permissions 

to allow read/write 

A platform driver creates a file attribute /sys/devices/<bus>/<device>/irqreg which 

can be read and written from user space 

Macros in Linux can be less obvious as details 

are hidden. DEVICE_ATTR() causes the data 

structure dev_attr_irqreg to be created. 

Device Drivers 
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printk() 
– Kernel version of printf() 

– Priority of kernel messages (log level) can be specified with the following 
symbols defined in <linux/kernel.h> 

• KERN_EMERG: Emergency message 

• KERN_ALERT: Alert message 

• KERN_CRIT: Critical situation 

• KERN_ERR: Error report 

• KERN_WARNING: Warning message 

• KERN_NOTICE: Noticeable message 

• KERN_INFO: Information 

• KERN_DEBUG: Debug message 

– Does not support floating point numbers 

– Example: 
printk(KERN_DEBUG “line %s:%i\n”, __FILE__, __LINE__); 

The log level can be altered from the command line in the proc file 

system 

– “echo 7 > /proc/sys/kernel/printk” changes the current level so all messages 

are printed 

Debugging With Printk 
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The sys and proc file systems contain a lot of good information 

/proc/interrupts shows the interrupt number assigned to a device 

and the number of interrupts that have occurred 

/proc/device-tree has the nodes of the device tree 

– Some nodes are binary such that hexdump must be used to view them 

/proc/cmdline has the kernel command line, which can be handy  

/proc/iomem shows the I/O memory claimed by device drivers 

 

Other Debug Tools 
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Linux Device Drivers Version 3 

– https://lwn.net/Kernel/LDD3/ 

Free Electrons 

– http://free-electrons.com/ 

– http://lxr.free-electrons.com/ 

Linux Foundation 

– http://training.linuxfoundation.org/free-linux-training/linux-training-videos/how-

to-build-character-drivers-for-the-linux-kernel 

– http://training.linuxfoundation.org/free-linux-training/linux-training-

videos/interrupt-handling-in-linux-device-drivers 
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Complete a platform character device driver 

– Get a platform driver working 

– Add character device functionality 

– Build the driver 

– Test the driver on the board 

 

Lab 2 


